Luminescence dating of samples from recent contexts in southern Africa

UWI

UW174

÷

INTRODUCTION The last 500 years was a formative period of the southern African past, during which hunter-gatherers, agropastoralists and colonists interacted frequently and intensely on the shared landscape. The archaeological and historical data from this era interleave: fitting the material remains into the oral record requires the chronological sequence of archaeological site settlement, use and abandonment to be sound and resolved ideally to a generational scale.

The prominent hill Smelterskop, in Rooiberg, Limpopo Province, South Africa (Figure 1), was at the center of the only major precolonial tin mining and smelting industry in southern Africa. When colonial geologists first surveyed the area at the beginning of the 20th century, it was estimated that earlier African miners extracted 20.000 tons of tin ore with hand tools.¹ The smelted tin was alloyed with copper to produce bronze, a metal traded widely in the region.^{2,3} Systematic archaeological research at Smelterskop began in 2006, and a major goal of this project was to establish a chronology of tin production in southern Africa.⁴

FIGURE 1 Left, photograph of Smelterskop and map of the Rooiberg region. Right, plan of Smelterskop, a major tin production center. The two archaeological feature OSL were the Central Wall midden (CW - orange) and Midden I (MI - blue).

RADIOCARBON DATING For decades, radiocarbon dating has been the preferred chronometric technique for sites in southern Africa: however, this method is inadequate for sites occupied in the last 500 years. Because of anomalies in atmospheric production of radiocarbon in the time range 1650-1950 cal CE, there are acute De Vries effects, or 'wiggles,' in the radiocarbon calibration curve over this period. Any radiocarbon age from this time calibrates to an ambiguous calendar date spanning two or more centuries and thus is not useful for evaluating the archaeology of tin at Smelterskop (Figure 2).

/1928	older grains	from the layer	below the mi	dicative of part	sampling	of this shallow i	insloping d	eposit
1929	Sample	Total dose rate (Gy/ka)	Unlogged age (Gy)	Unlogged age model	% <i>a</i> ,	Age (ka)	% error (1 d)	Calendar date CE (20)
	SKOP CW I	lidden						
UW1748	UW1747	1.97±0.08	0.52±0.03	MAM	31	0.264±0.020	7.6	1744 ± 40
	UW1749	2.01±0.08	0.38±0.03	CAM	0	0.189±0.018	9.4	1819 ± 36
	UW1928	2.86±0.09	0.59±0.03	CAM	0	0.206±0.014	6.7	1803 ± 28
	UW1929	2.80±0.12	0.51±0.07	CAM	0	0.182±0.027	14.7	1827 ± 54
	SKOP Midd	en I						
UW1926	UW1746	2.22±0.11	0.50±0.04	MAM	31	0.225±0.022	9.8	1782 ± 44
	UW1748	2.17±0.10	0.35±0.03	CAM	0	0.161±0.016	10.2	1846 ± 32
1750 1800 1850 1900	UW1926	1.71±0.08	0.50±0.04	MAM	19	0.293±0.016	5.5	1716 ± 32
alendar Date CE (2o)	UW1927	2.81±0.12	0.61±0.06	MAM	21	0 217+0 024	111	1792 + 48

LUMINESCENCE DATING Using optically stimulated luminescence (OSL) dating on single quartz grains, chronometric results with good resolution were obtained for multiple samples from two archaeological middens on Smelterskop (Figures 3 and 4). A Venetian white-heart bead was excavated from the CW midden. This type of small glass trade bead appeared in southern Africa in the first decades of the 19th century, and the OSL ages corroborate this terminus post quem bead date. The older ages for Midden I substantiate archaeological evidence from stone wall architecture and ceramic decoration that suggest the feature relates to an earlier occupation of Smelterskop.

Some challenges in OSL dating of young samples are due to short burial time, yielding a low OSL signal. With low signal, even a small degree of partial bleaching in a sample can be significant. A high percent of overdispersion ($\sigma_{\rm b}$) of individual grain measurements around the equivalent dose ($D_{\rm a}$) of the sample is an indicator of a mixed-age sample.⁵ This may be due to post-depositional mixing, partial bleaching, or inclusion of grains strata of different ages in the sample during collection. Where there is high overdispersion and evidence for partial bleaching or grains from bordering strata, the sample De is calculated with a minimum age model (MAM). Samples with low overdispersion represent a single statistical population, and the sample age is calculated with a central age model (CAM).

We measured hundreds of grains to obtain statistically significant samples of sensitive grains, performed stepped preheat tests and determined the frequency of recuperation to assess if thermal transfer occurred (Figure 5). Recuperation⁶ is a term for the transfer of electrons from a light insensitive to a light sensitive trap during the preheat, and it can be a problem for young samples. Recuperation can cause age over-estimation. A significant OSL signal following a bleach and preheat is some indication of its presence (Figure 6). We calculated D_a on sample grains with and without recuperation to determine if it has an effect on age (Figure 7).

In addition, in young samples, a relatively high proportion of measured grains yield a De value close to or even less than zero. This is significant, because the common statistical models for calculating sample De from the population of accepted single grains are logged models. A logged model does not characterize a D_a population close to zero well and cannot integrate results where $D_{\mu} \leq$ zero. Performing a logged analysis, plus systematically deleting grains where $D_{\mu} \leq$ zero, will bias the sample D_{μ} and result in an older age. We compared the Smelterskop OSL ages using both logged and unlogged^{7, 8} statistical models (Figures 7 and 8).

FIGURE 4. A frequency histogram of D₂ matched with a plot of standard error is one way to depict the distribution of all grains in a luminescence sample. Radial plots, in which the D₂ value for each grain in a sample's logislyed with eact associated error, are far superior in graphically representing the population of grains in a sample's Negative and zero D₂ whiles cannot be included in a radial plot, however, because point locations on a radial plot are calculated according to a sandardised log D, Hers, for the samples containing grain where D, § 0, radia plots are scaled by the constant indicated order to include the negative and zero values in the characterization of the sample (see Spure 3 for true ages). The yellow bur represents the unlogged CAM see (2n) and the purple bar represents the unlogged MAM age (2n). The red line denotes the midpoint of the logged CAM, see comparison.

00

FIGURE 6 Dose response curves of grains from sample UW1748: (a) typical dose response curve; (b) dose response D_s = 5.90±0.86 sGy curve where the OSL signal from the nature is higher than the signal from the highest regeneration dose, indicating an unbleached or partially bleached grain or misestimation of the age range of the sample; (c) example of the age range of the sample; (c) example of recuperation in a dose response curve, where Lx/Tx from the zero dose > 10% of the natural signal > 0.1 (Lx/Tx 0 sGy = 0.137; N = 0.450). D. = 5 01+2 14 sGy De = 14.22±2.50 sGy

Dana Drake Rosenstein^a & James Feathers^b

* School of Anthropology, University of Arizona, Tucson; ddr@email.arizona.edu
* Department of Anthropology, University of Washington, Seattle; jimf@u.washington.edu

CONCLUSION The Smelterskop OSL dates demonstrate that for the recent past, luminescence dating is significantly more accurate than is possible with radiocarbon. Unlogged statistical models better reflect the range of D, values typical in a young OSL sample. The results from Smelterskop indicate that use of the hill as a center for tin production postdates the earliest exploitation of tin from the Rooiberg valley by 500 years or more.² Refined chronologies using luminescence dating will enable us to map out ancient trade networks, identify centers of political economic power, explore the nature of relationships between communities and identify technological innovations in metallurgical and agropastoral production over the last 500 years - a major contribution to the historical record of South Africa.

	 M. Baumann, Journal of the Chemical, Metallurgical and Mining Society of South Africa 19, 120 (1919). J. J. Malafilia J. T. Chenher, D. J. Killick, J. Rein, Archaeterative (in emission).
	2.5. Chickney, P. Komen, D. Vilke, Jacob (Archaelening Community)
s students	 Chirikure, S. Hall, D. Miller, in Metch and mines studies in archaeoloneallargy S. La Niece, D. Hook, P. Craddock, Eds. (British Museum Press, London, 2007) pp. 112-119.
	 R. F. Galbraith, R. G. Roberts, G. M. Laslett, H. Yoshida, J. M. Olley, Archaeometry 41, 339 (1999). M. L. Aitken, B. W. Smith, Ousterney Science Reviews 7, 387 (1988).
	 L. J. Arnold, R. G. Roberts, R. F. Galbraith, S. B. DeLong, Quaternary Geotronology 4, 306 (2009). T. J. Piesch, Quaternary Geochronology 4, 406 (2009). F. G. McComment and P. Redevolves 44 (1982) (2004).
	 P. G. Pickermac et al, Addecardol 46, 100 (2004). C. Bronk Ramsey. (Available at http://c14.arch.ax.c.uk/, 2006). A. G. Winde, A. S. Murray, Rolation Measurements 41, 369 (2006).

ACKNOWLEDGEMENTS

h

e Foundation