
William Taylor¹, Tumuurbaatar Tuvshingjargal², and Jamsranjav Bayarsaikhan²

¹Department of Anthropology, University of New Mexico, ²National Museum of Mongolia, Ulaanbaatar

Abstract
This poster investigates the utility of equine cranial pathologies for the archaeological identification of horseback riding. Human management of horses dates to at least 3500 BCE, but empirical evidence for how these earliest horses were used in transport is scarce (Olsen 2006, Dietz 2003). Few unambiguous equestrian artifacts are known prior to the age of worked metal, and previous attempts to characterize horseback riding through biological means have seen limited success. Cranial pathologies may be well-suited to the archaeological identification of horse transport. New data from museum collections suggest that reliance on zoo specimens confounded previous efforts to compare the skulls of worked and unworked horses. Changes to the nuchal crest and naso-incisive bone, as quantified using 3D digital measurement, provide a useful archaeological signature for horse transport. Applying these techniques to a sample from the Deer Stone-Khirigsuu complex of Bronze Age Mongolia (1300-700 BCE) provides compelling evidence of early equestrianism, and indicates that application to other archaeological contexts may be profitable.

Methods
- 25 DSK skulls from Mongolian museum collections aged using dental eruption/wear patterns.
- Scanned using a NextEngine3D digital scanner (Figure 1).
- Ossification at the nuchal ligament attachment site measured and given qualitative score after Bendrey (2008).
- Naso-incisive groove depth measured digitally.
- Data compared to 25 feral, zoo, and wild horses from museum collections.
- Qualitative and statistical analysis performed to test hypothesis of DSK horsemanship and explore archaeological utility of cranial bone changes.

Results

![Image of horse and artifacts]

3D metric comparison between horses of known work histories suggests that both nuchal ligament ossification scores and nasal groove depth track differences in human management and use of horses. Age-dependency does not explain observed patterns of medial groove depth, which means it can be profitably applied to a wide range of archaeological contexts where riding artifacts themselves are lacking. Better age control is needed before nuchal ossification can be used as stand-alone evidence for horseback riding, but a positive relationship between the two measurements points to a common causal mechanism. Lateral groove formation requires further research, but may be the result of bridle use. Taken together, these osseous changes to the cranium provide a quantitative means of identifying prehistoric horse transport, and point to chariot use and equestrianism as early as 1300 BCE in the Mongolian steppe.

Conclusion

References Cited

Acknowledgments

Table 1

<table>
<thead>
<tr>
<th>Group</th>
<th>Sample</th>
<th>Wild</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ridden</td>
<td>Sample 0.4855 -- --</td>
<td></td>
</tr>
<tr>
<td>Wild 0.0027* 0.0465*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zoo 0.1667 0.55585 0.0153*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 10. Right: Carvings found on Deer Stone sites in Mongolia, including horses on ‘tool belts’ (top through center), partial (percent from right) and saddled horse (right). Adapted from Hollow 2002.

Figure 3 (lower right). Occipital crest and nasal groove (center) from a feral Chincoteague Pony (left), and from General John J. Pershing’s war horse Eitan (right). Specimens from the Smithsonian National Museum of Natural History. Photos courtesy of Chincosteppa.com and WildlifeComm, respective.

Ante, Barry.

Bendrey, Will V.

Bemman, Robin.
2004. Unsettling Monumental Landscapes: in Inner Asia and Beyond, edited by Bernace A. University of Kansas, Kansas City.

Boivin, Nathan.
2009. The Horse in Arid Asia: An Analysis of the Khirigsuur Stone, Mongolia. In Frontiers of Archaeology, edited by Bernace A. University of Kansas, Kansas City.

Bryant, Michael.

Carver, Stuart.
2009. The Horse in Arid Asia: An Analysis of the Khirigsuur Stone, Mongolia. In Frontiers of Archaeology, edited by Bernace A. University of Kansas, Kansas City.

Cited

Deer Stone sites in Mongolia, including horses on ‘tool belts’ (top through center), partial (percent from right) and saddled horse (right). Adapted from Hollow 2002.

Equine Veterinary Journal

Figure 4. Measurement protocol for nuchal ligament ossification (left) and nasal groove (right). DSK scores were assigned a qualitative score based on bone protrusion, texture, and overall appearance. Nasal measurements were taken at the deepest point of the groove, at the intersection of groove walls with the dorsal border of the nasso-incisive bone.

Figure 9, right. Lateral groove depth across groups, after normalization to body size.